

Sistemas Digitais para Computação

AULAS TEÓRICAS

01 a 08

Prof. MSc. Mário Oliveira Orsi

Prof. MSc. Carlos Alexandre Ferreira de Lima

FEVEREIRO de 2015

Sistemas Digitais para Computação

Roteiro da 1ª aula

Referência ao Programa: 1.Introdução

- Conceitos Básicos
- Comportamento Analógico e Digital

Referência Livro Texto: Capítulo 1

Objetivo: apresentar os conceitos de lógica digital, de maneira a proporcionar uma visão interna dos circuitos que compõem um sistema digital, como um computador, por exemplo.

Atividades:

- Distribuição do Programa.
- Discussão preliminar dos conteúdos e Plano de Avaliações.
- Apresentação dos conceitos Básicos.

CONCEITOS BÁSICOS / COMPORTAMENTO ANALÓGICO E DIGITAL

Mundo eletrônico moderno → circuitos e máquinas que processam de forma automatizada os Sinais elétricos → Codificam informações (ou dados)

Técnicas analógica e digital → comportamento dos sinais em relação ao tempo Operação: Analógica → infinitos valores Digital → alguns valores

Fronteira entre um e outro tipo de comportamento -> ponto de vista ou referencia

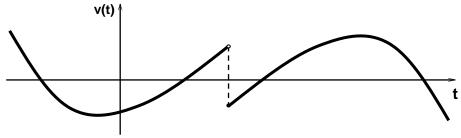
Sinais Elétricos: Grandezas elétricas (tensão, corrente...) em que se codificam os dados manipulados por máquinas e circuitos elétricos.

Sinais Contínuos e Sinais Discretos no Tempo:

Sinal contínuo → função com variações suaves ou representação gráfica, não apresenta interrupções.



Sinal Descontínuo → funções que apresentam interrupções.



Sinal Discreto → valores distintos do tempo, representação gráfica em "barras" (os valores amostrados são os dos extremos da barra).

Fontes contínuas: Polaridade constante.

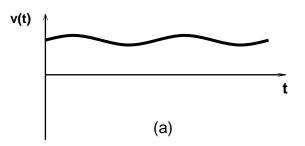
Forma contínua constante: a amplitude também não varia.

Fontes não contínuas: ocorre mudança de polaridade.

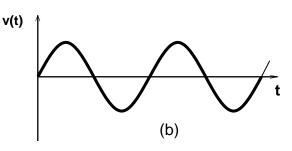
Fontes alternadas: Sequencia de valores positivos e negativos que se repetem periodicamente.

Formas de onda: Representação gráfica dos sinais elétricos em relação ao tempo.

(a) Corrente Contínua



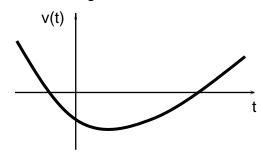
(b) Corrente Alternada



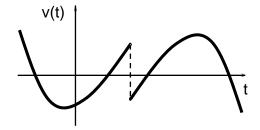
Sinais Analógicos e Sinais Digitais

Sinal analógico → são válidos todos os possíveis valores em um intervalo de tempo

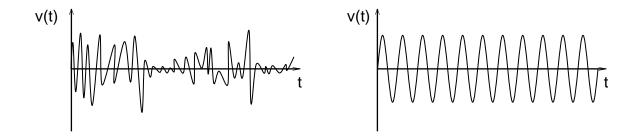
Sinal analógico contínuo



Sinal analógico Descontínuo



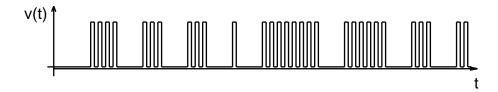
Outros exemplos de Sinais analógicos contínuos:



Dos sinais analógicos não contínuos, os que têm maior interesse no estudo de sistemas digitais são os sinais discretos amostrados no tempo:

Sinal digital → válido apenas um número (finito) valores. Cada um destes valores em degraus, assim, pode ser associado a um algarismo (dígito) de um sistema de numeração ou de codificação, de onde vem o termo digital.

Exemplo: trem de pulsos gerado por um discador telefônico.

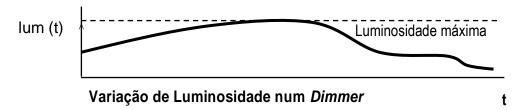


Um sinal digital também pode ser amostrado no tempo

REPRESENTAÇÕES NUMÉRICAS PARA QUANTIDADES FÍSICAS

Analógica: Quantidade proporcional (variação contínua dentro de uma faixa de valores)

Ex: Velocímetro, termômetro, microfone, relógio ponteiros, Dimmer.



Digital: Quantidade representada por Dígitos (valores discretos)

Ex: Relógio digital → saltos de Um Seg., Odômetro.

SISTEMAS ANALÓGICOS E SISTEMAS DIGITAIS

Sistema: Qualquer conjunto de elementos inter-relacionados que interagem para executar uma tarefa específica.

Digital → Característica: está relacionado com Dígito → algarismo.

Ex: Calculadora digital; Computador digital; Videogames (painel); Fornos de microondas (controle); Sistemas de controle automotivos; Equipamentos de teste: Geradores; medidores; osciloscópios etc.

Sistema Digital → Conjunto de dispositivos que manipulam quantidades de forma digital

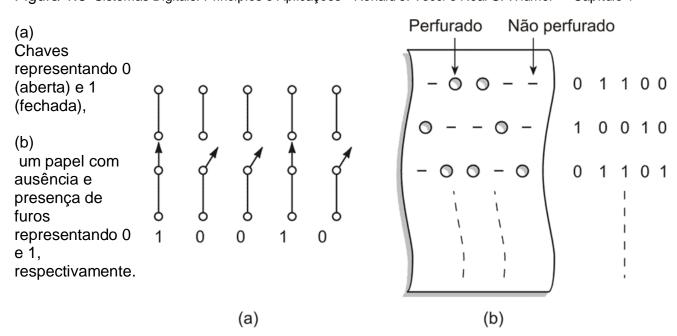
Ex: Calculadoras, computadores, controle semáforo, máquina escrever, sistemas telefônicos atuais, relógio digital, odômetro...

Sistema Analógico→Conj. de dispositivos que manipulam quantidades físicas representadas Analogicamente

Ex: Radio gravadores de fita, sistemas telefônicos antigos, velocímetro, relógio de ponteiros.

Sistemas Digitais Binários → Sistemas composto por componentes eletrônicos que possui dois estados (binário). Os dois níveis ou estados são usualmente representados por:

Figura 1.6 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 1



Componentes Digitais:

Inicio → circuitos eletroeletrônicos de dois estados compostos de interruptores, lâmpadas, relés, diodos, transistores.

Hoje → circuitos integrados (CIs).

A integração em larga escala (LSI = Large Scale Integration), de milhares de componentes discretos (diodos, transistores, resistores e capacitores) em uma pequena pastilha de silício de alguns milímetros quadrados encapsulada em um invólucro de alguns centímetros.

Vantagens das técnicas digitais:

Projeto fácil: circuitos de chaveamento

Armazenamento fácil: + tempo com circuitos de chaveamento

Maior precisão e exatidão: +circuitos de chaveamento =+dígitos de precisão

Simplicidade de Programação

Circuitos digitais → menor interferência de ruídos

Integração dos circuitos mais adequada

Limitações das técnicas digitais:

• *Mundo Real* → é analógico

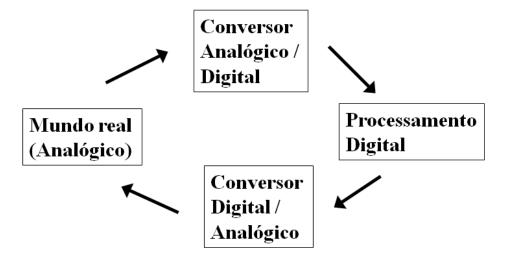
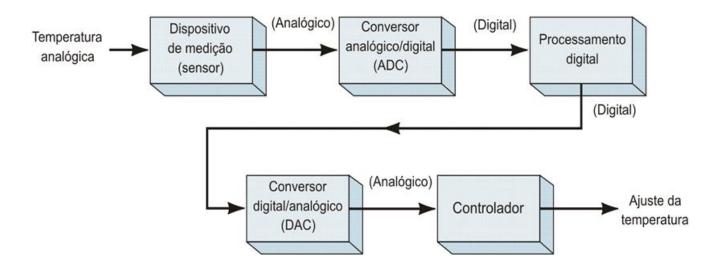


Figura 1-1 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 1

Diagrama de um sistema de controle de temperatura que requer conversão analógico-digital para permitir o uso de técnicas de processamento digital.



Circuitos lógicos

Circuito: é um caminho, trajeto...

Circuito Lógico: são circuitos digitais, utilizados para processar (obedecendo a um determinado conjunto de regras lógicas) informações sob forma binária.

Estados estáveis: tempo de permanência é muito maior que o da transição.

Estados instáveis: transições de fenômenos com tempos comparáveis com o tempo da transição.

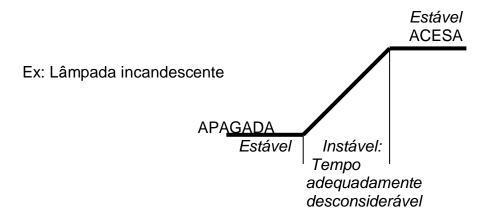
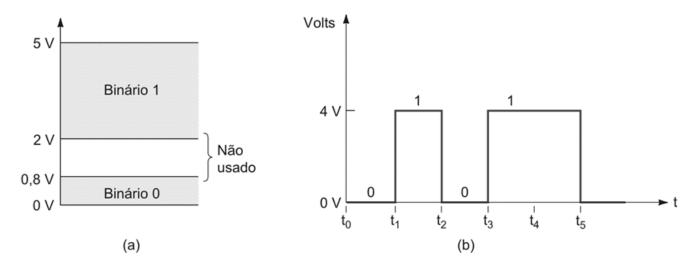


Diagrama de Tempo: Formas de Ondas Típicas de comportamento digital.

Figura 1-7 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 1



- (a) Valores típicos de tensões em um sistema digital;
- (b) diagrama de tempo de um sinal digital típico.

Álgebra Booleana: é um modo de expressar a relação entre as entradas e as saídas em um circuito lógico.

Portas lógicas: circuitos digitais cuja única saída é o resultado de uma decisão i.é operação lógica básica (OR, AND, NOT) realizada sobre suas entradas.

Dispositivos de Memória: são circuitos que tem a propriedade de reter (armazenar) sua resposta (um bit - dígito binário) a uma entrada momentânea.

Atividade para casa: Ler o Capítulo 1 do Livro texto e Responder as questões.

Sistemas Digitais para Computação

Roteiro da 2ª aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

- Tabela Verdade
- Blocos Lógicos Básicos AND, OR, e NOT
- Funções NAND e NOR
- Diagrama de Tempo

Referência Livro Texto: Capítulo 3 – 3.1 a 3.3; 3.5 e 3.9

Objetivo: apresentar os conceitos de álgebra booleana; tabela verdade; portas lógicas fundamentais; e Diagrama de tempo de maneira a proporcionar a realização e descrição das operações lógicas fundamentais, desenho de diagramas de tempo para várias portas lógicas.

Atividades:

Apresentar os conceitos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS

<u>Circuitos Lógicos</u>: operam com níveis lógicos 0 e 1 (intervalos de tensão pré definidos - 0 e 0.8V = 0; 2 e 5V = 1) permitindo o uso da Álgebra booleana para a sua análise e projeto.

Álgebra booleana: ferramenta matemática que permite descrever através de equações (expressões booleanas) a relação entre a(s) saída(s) e entrada(s) de um circuito lógico.

<u>Tabela Verdade</u>: representação na forma de uma tabela da saída de um circuito lógico em função da(s) entrada(s).

CONSTANTES E VARIÁVEIS BOOELANAS.

Nível lógico 0	Nível lógico 1
Falso	Verdadeiro
Desligado	Ligado
Baixo	Alto
Não	Sim
Chave aberta	Chave fechada

PROPOSIÇÕES E CONECTIVOS LÓGICOS

Toda afirmação é uma proposição lógica e responde com uma das situações:

V= verdadeiro ou F= falso

Lógico = Certo, óbvio, verdadeiro, preciso.

A associação entre duas proposições é feita com conectivos – ou, e. Exemplos:

1. Proposição composta de duas proposições simples unidas com conectivo lógico

Minha casa é grande e bonita. ié Minha casa é grande Minha casa é bonita



2. Proposição composta de duas proposições simples unidas com conectivo lógico

Peguei um giz azul Peguei um giz branco ou azul. ié Peguei um giz branco **ou**

Tabela $\begin{array}{c cccc} V & \leftarrow & V \\ V & \leftarrow & V \\ V & \leftarrow & F \\ \hline & F & \leftarrow & F \\ \end{array}$	F V F
---	-------------

- TABELA VERDADE: Representam o COMPORTAMENTO ESTÁTICO do circuito sendo:
- Colunas → entrada(s) = proposições simples e saída(s) = proposição composta função
- Linhas → as combinações das entrada(s) e a saida correspondente.
- Determina-se o numero de combinações possíveis a partir do numero de entradas (n):

$$(n^{\circ}. Linhas) = (2^{n})$$

Substituímos o F = 0 e V = 1

Exemplos de tabelas – verdade para circuitos de:

(b) três entradas e (a) duas entradas. (c) quatro entradas.

Figura 3-1 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 3

	_						
Entradas Output							
Inputs							
\	\downarrow		\				
Α	В		Х				
0	0		1				
0	1		0				
1	0		1				
1	1		0				

Saída

			_		
Α	В	С		Х	
0	0	0		0	
0	0	1		1	
0	1	0		1	
0	1	1		0	
1	0	0		0	
1	0	1		0	
1	1	0		0	
1	1	1		1	
(b)					

Α	В	С	D	х
0	0	0	0	0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
0	0	0	1	0
0	0	1	0	0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	1
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	1
1	0	0	0	0
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1
1	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	1

(c)

Cada tabela enumera todas a combinações possíveis dos níveis lógicos de entrada do lado esquerdo e a saída correspondente na direita

• PORTAS LÓGICAS FUNDAMENTAIS

1. Negação - NOT - NÃO - INVERSÃO

Tabela Verdade

A = entrada

$$S = saída$$

Representação: $S = \overline{A} = A$ negado, A barra, não A

Bloco lógico/ Simbologia da Negação

Presença do pequeno círculo sempre indica inversão

Isolador / separador buffer

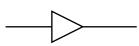
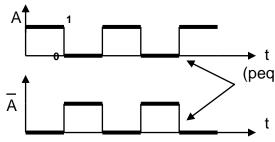


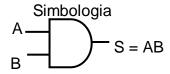
Diagrama de Tempo → Representa o COMPORTAMENTO DINÂMICO do circuito.



transição: saltos $0 \rightarrow 1$, quedas $1 \rightarrow 0$

(pequeno tempo de propagação desprezado)

2. Porta **AND – E** A = entrada B = entrada S = saída Representação: S = A E B; S = A . B ; S = AB



A figura abaixo mostra um *Diagrama de Tempo* para A e B variando em relação ao tempo e a correspondente variação da saída AB

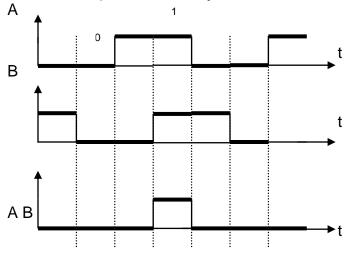


Tabela da Verdade

Α	В	S
0	0	0
0	1	0
1	0	0
1	1	1

 A saída é 1 quando todas as entradas forem 1 ou a saída é 0 quando pelo menos uma das entradas for 0

Figura 3-7- Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 3

- (a) Tabela-verdade para a operação AND;
- (b) símbolo da porta AND.

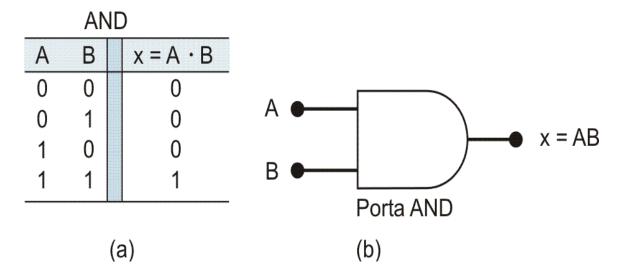


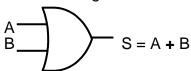
Figura 3-8 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer - Capítulo 3

Tabela-verdade e símbolo para uma porta AND de três entradas.

Α	В	С	x = ABC	
0	0	0	0	
0	0	1	0	
0	1	0	0	A •
0	1	1	0	B ●
1	0	0	0	c •——
1	0	1	0	
1	1	0	0	
1	1	1	1	

3. Porta **OR – OU** A = entrada B = entrada S = saída Simbologia Representação: S = A + B; S = A **OU** B

A figura abaixo mostra um *Diagrama de Tempo* para A e B variando em relação ao tempo e a correspondente variação da saída A+B



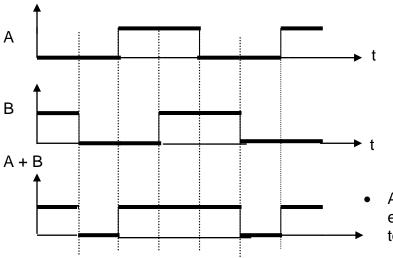


Tabela da Verdade

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

A saída é 1 quando pelo menos uma entrada for 1 ou a saída é 0 quando todas as entradas forem 0

Figura 3-2 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

- (a) Tabela-verdade que define a operação OR;
- (b) símbolo de uma porta OR de duas entradas.

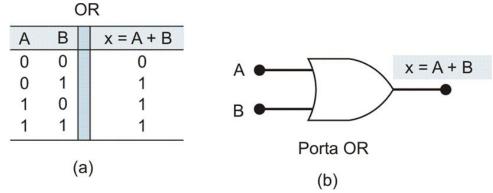


Figura 3-3 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3 Símbolo e tabela-verdade para uma porta OR de três entradas.

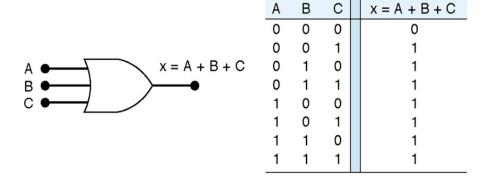
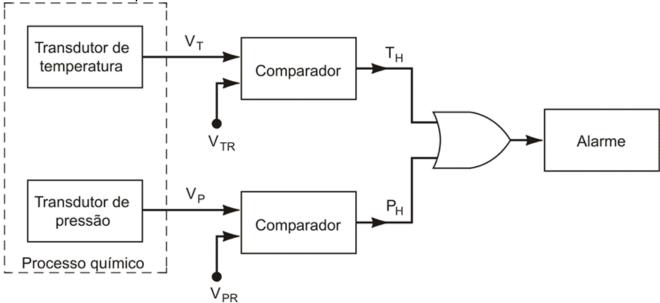


Figura 3-4 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

Exemplo do uso de uma porta OR em um sistema de alarme.

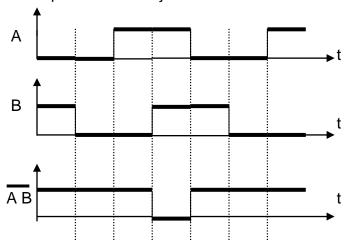
O alarme deverá ser ativado no processo químico abaixo sempre que a temperatura exceder VTR ou a pressão estiver acima de VPR



4. Porta NAND - NE

A = entrada B = entrada S = saída

A figura abaixo mostra um *Diagrama de Tempo* para A e B variando em relação ao tempo e a correspondente variação da saída A B



Simbologia

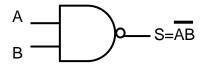


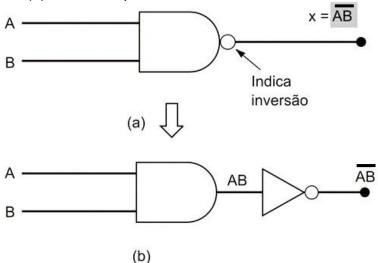
Tabela da Verdade

Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

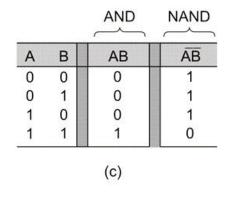
A saída é 0 quando todas as entradas forem 1 ou a saída é 1 quando pelo menos uma das entradas for 0

Figura 3-22 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

- (a) Símbolo da porta NAND;
- (b) Circuito equivalente;



(c) Tabela-verdade.



5. Porta NOR - NOU

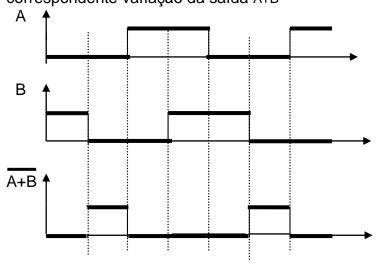
A = entrada B = entrada S = saída

Representação:
$$S = \overline{A + B}$$
; $S = \overline{A \text{ ou } B}$

Tabela da Verdade

В	S
0	1
1	0
0	0
1	0
	B 0 1 0 1

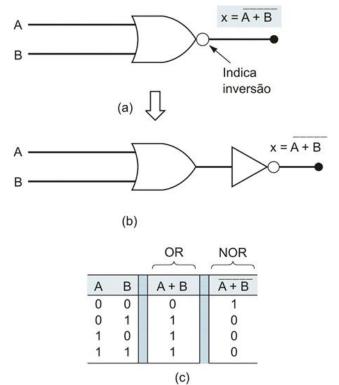
A figura abaixo mostra um *Diagrama de Tempo* para A e B variando em relação ao tempo e a correspondente variação da saída A+B



 A saída é 0 quando pelo menos uma entrada for 1 ou a saída é 1 quando todas as entradas forem 0

Figura 3-19 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

- (a) Símbolo da porta NOR;
- (b) Circuito equivalente;
- (c) (c) Tabela-verdade.



Exercícios em sala:

• Desenhar abaixo um diagrama de tempo para as portas AND, OR, NAND e NOR, de três entradas considerando as entradas variando nas sequencias →

•
$$A = 1,0,0,1,0,1,1$$

•
$$B = 0,1,0,1,0,0,1$$

$$C = 1,1,0,1,1,0,1$$

Atividades Para casa: Ler o Capítulo 3 do Livro texto e Responder as questões e problemas referentes aos itens 3.1 a 3.5 e 3.9.

Sistemas Digitais para Computação

Roteiro da 3ª aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

- Combinações de portas
 - Determinação da expressão booleana que descreve um circuito lógico
 - Implementação de circuitos a partir de expressões lógicas
- Postulados

Referência Livro Texto: Capítulo 3 – 3.6 a 3.8

Objetivo: apresentar a Relação entre o circuito e a expressão lógica; Levantamento de tabela a partir do circuito / expressão; Postulados da Álgebra booleana.

Atividades:

• Apresentar os conceitos e exemplos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS cont.

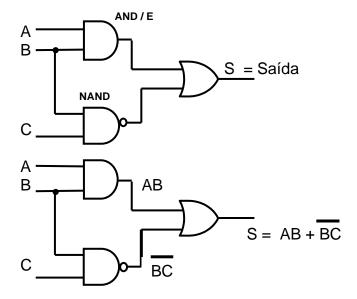
COMBINAÇÃO DE PORTAS.

Os circuitos lógicos de todos os dias usam as portas básicas e pode ser descrito completamente pelas operações booleanas.

Circuitos Lógicos → Portas Lógicas Básicas → Operações Booleanas

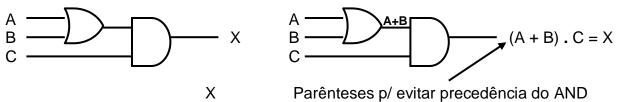
• Determinação da expressão booleana que descreve um circuito lógico

1º Exemplo:



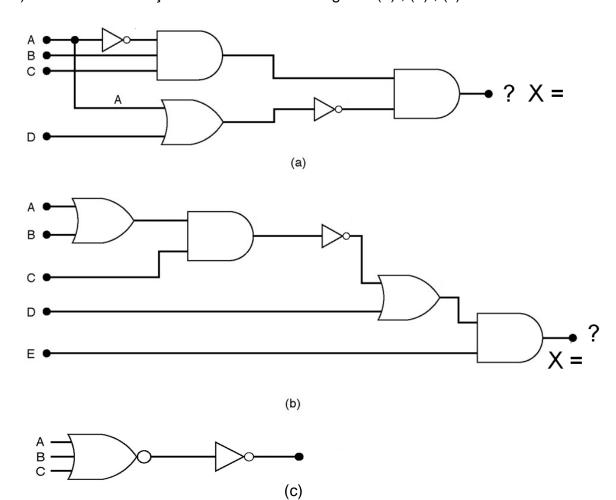
Α	В	С	AB	ВС	ВС	S
0	0	0	0	0	1	1
0	0	1	0	0	1	1
0	1	0	0	0	1	1
0	1	1	0	1	0	0
1	0	0	0	0	1	1
1	0	1	0	0	1	1
1	1	0	1	0	1	1
1	1	1	1	1	0	1

2º Exemplo:

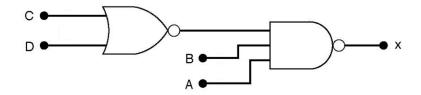


Α	В	С	A+B	(A+B).C
0	0	0	0	0
0	0	1	0	0
0	1	0	1	0
0	1	1	1	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	0
1	1	1	1	1

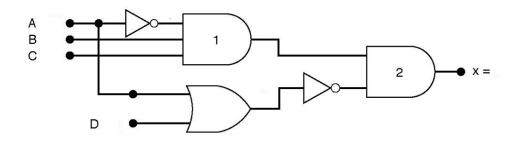
Outros exemplos para execução **em sala:**1) Determinar a função X dos circuitos das figuras (a) , (b) , (c)



2) Determinar a expressão booleana que descreve um circuito lógico e o nível da saída x para uma entrada ABCD = 1110



3) Determinando o nível lógico da saída a partir de um diagrama do circuito. Para Entradas ABCD → 0111 Saida X = ?



• Implementação de um circuito lógico a partir da expressão booleana

1º Exemplo: Encontrar o circuito para S = Ā+ BC+AB

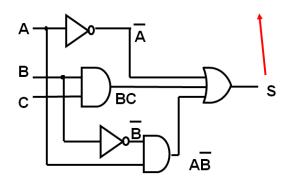
Solução: 3 entradas A, B e C

Dois inversores para A e B

Dois AND: B.C e AB

Um OR com três entradas: A + BC + A B

Portanto:



Α	В	С	Ā	вС	<u>–</u> В	AB	S
0	0	0	1	0	1	0	1
0	0	1	1	0	1	0	1
0	1	0	1	0	0	0	1
0	1	1	1	1	0	0	1
1	0	0	0	0	1	1	1
1	0	1	0	0	1	1	1
1	1	0	0	0	0	0	0
1	1	1	0	1	0	0	1

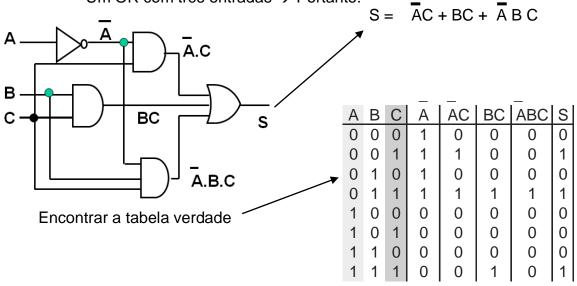
 2° Exemplo: Encontrar o circuito para S = AC + BC + A.B.C

Solução: 3 entradas A, B e C

Um Inversor para A

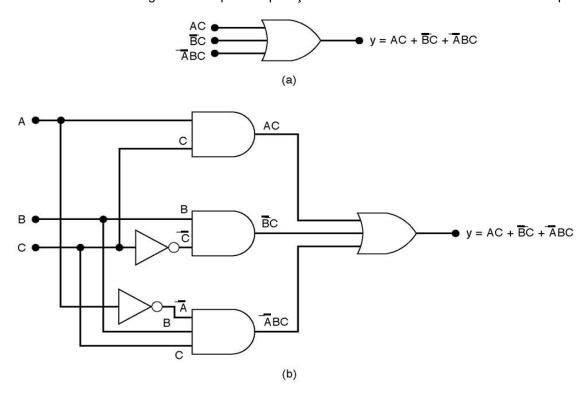
Três AND: A.C, B.C e A.B.C

Um OR com três entradas → Portanto:

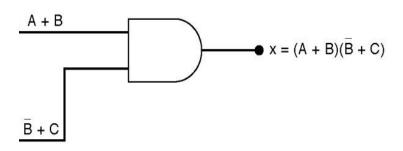


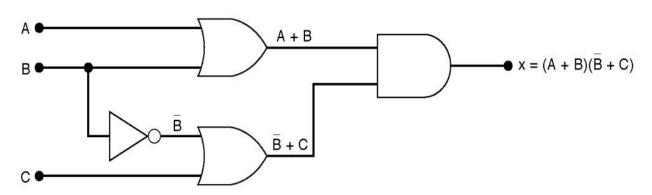
2º Exemplo: Construindo um circuito lógico a partir de uma expressão Booleana. (da saída para a entrada)

Figura 3-17 - Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3



3º Exemplo: Construindo um circuito lógico a partir de uma expressão Booleana. (da saída para a entrada)





Expressões Duais

Exemplos:

ou
$$\leftrightarrow$$
 e ou \leftrightarrow e
+ \leftrightarrow . $X+Y \leftrightarrow X.Y$
0 \leftrightarrow 1 0+A \leftrightarrow 1.A

Ao mudar a expressão para Dual deve ser mantido as associações anteriores.

Ex.:
$$X + Y \cdot Z \rightarrow X \cdot (Y + Z)$$

Outros exemplos:

A.(B+C) + A. B. C
$$\rightarrow$$
 (A + B.C). (A + B + C)

[A.(B+C) + A]. B. C \rightarrow {[(A + (B.C)). A] + B} + C

(A + B.C). A + B + C

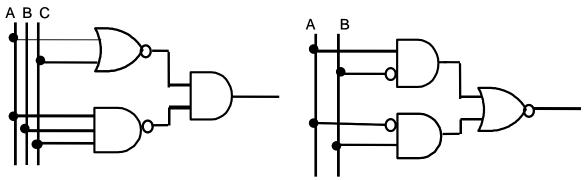
22

- POSTULADOS→ proposição que se admite sem demonstração
- X (variável simples, função) pertence ao $\{0, 1\}$ ou X = 0, ou X = 1

$$-\overline{0} = 1$$
, $\overline{1} = 0$ NOT / Negação

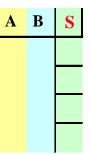
- ou/OR →

- Outros Exercícios em sala ANEXO terminar em casa:
- 1. Obter a expressão booleana e tabela verdade para os circuitos:



- 2. Esquematizar o circuito e obter a tabela verdade para a expressão:

 ■ ■ Dica: tabela verdade →
- $ABI_0 + ABI_1 + ABI_2 + ABI_3$



- 3. Esquematizar o circuito e obter a tabela verdade para a expressão:
 - ABC+ABC+ABC+ABC+ABC+ABC+ABC

Atividades Para casa: Ler o Capítulo 3 do Livro texto e Responder as questões e problemas das seções 3.6 a 3.8.

Sistemas Digitais para Computação

Roteiro da 4ª aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

- Simplificação Algébrica
- Teoremas de DeMorgan
- Complemento de expressão lógica

Referência Livro Texto: Capítulo 3 – 3.10

Objetivo: apresentar os Teoremas triviais suas consequências; Propriedades algébricas, os Teoremas De Morgan e Complemento de expressões lógicas.

Atividades:

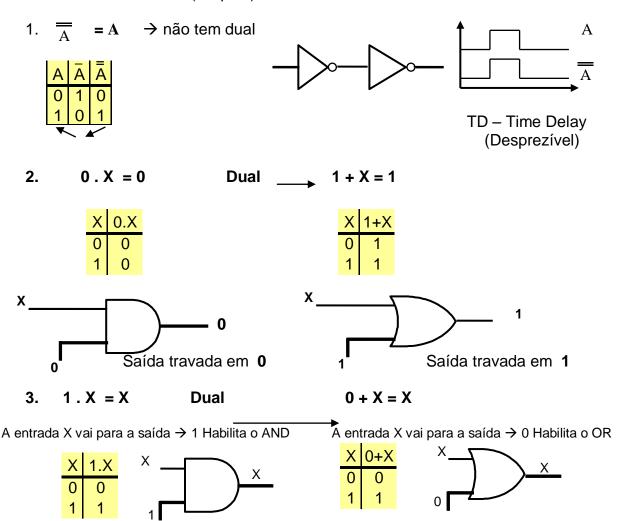
• Apresentar os conceitos e exemplos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS

SIMPLIFICAÇÃO ALGÉBRICA

Os circuitos lógicos são descritos completamente pelas operações booleanas, e os teoremas booleanos são usados para sua simplificação.

TEOREMAS TRIVIAIS (simples)



Resumindo:

0 : habilita (enable) a porta OU

 \Rightarrow S = X \Rightarrow S = 1 deixa passar o sinal X a saída trava em 1

1 : Inibe (desable) a porta OU

1 : habilita (enable) a porta AND

 \rightarrow s = x

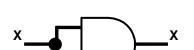
deixa passar o sinal X a saída trava em 0

0 : Inibe (desable) a porta AND

 \rightarrow s = 0

x s

4. $X \cdot X = X$



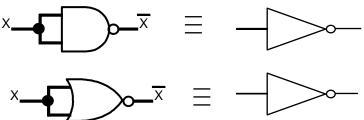


* Não altera o nível lógico

São duas utilidades: - Restaurar um sinal fraco (tensão)

- Aumentar a cargabilidade de saída (corrente)

• Conseqüências:



1 : habilita (enable) a porta NAND

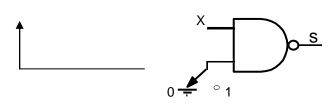
0 : Inibe (desable) a porta NAND

 \rightarrow s = \overline{X}

inverte o sinal X

 \rightarrow s = 1

trava em 1

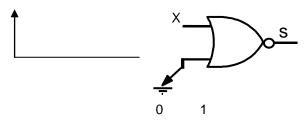


$$\Rightarrow s = \overline{X}$$

$$\Rightarrow s = 0$$

inverte o sinal X trava em 0





5.
$$X \cdot \overline{X} = 0$$

$$X + \overline{X} = 1$$

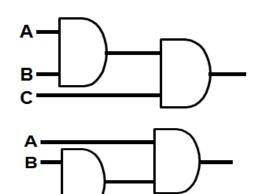
PROPRIEDADES ALGÉBRICAS

$$A + B = B + A$$

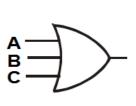
2 - Associativa:

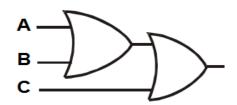
$$ABC = (AB)C = A(BC)$$

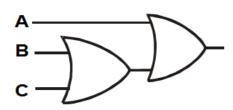
AB = BA



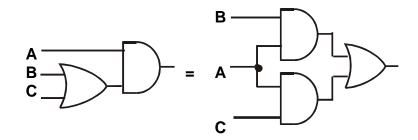
$$A+B+C=(A+B)+C=A+(B+C)$$



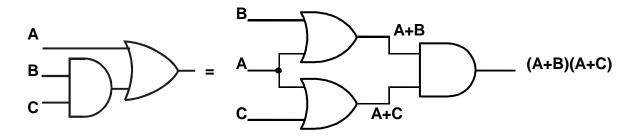




3 - Distributiva: A. (B+C) = A.B+A.C



Dual \rightarrow A+B.C = (A+B).(A+C)



4 - Fatoração: XY + XZ = X(Y+Z) Dual → (X+Y).(X+Z) = X+Y.Z

• TEOREMAS de DeMorgan:

São teoremas atribuídos ao matemático DeMorgan de grande utilidade na simplificação expressões lógicas.

O produto AND ou a soma OR das variáveis é invertido.

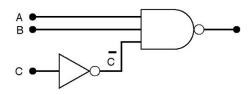
$$1 - \overline{ABC} = \overline{A} + \overline{B} + \overline{C} \qquad 2 - \overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

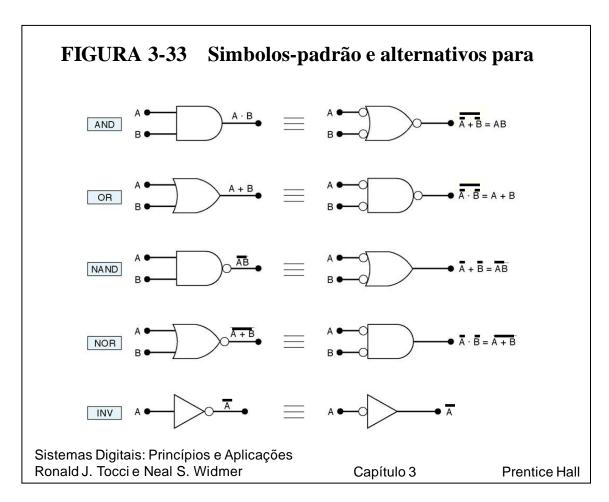
Α	В	С	Ā	B	c	ABC	Ā + B + C
0	0	0	1	1	1	1	1
0	0	1	1	1	0	1	1
0	1	0	1	0	1	1	1
0	1	1	1	0	0	1	1
1	0	0	0	1	1	1	1
1	0	1	0	1	0	1	1
1	1	0	0	0	1	1	1
1	1	1	0	0	0	0	0

				_	_		
Α	В	С	Α	В	С	A.B.C	A + B + C
0	0	0	1	1	1	1	1
0	0	1	1	1	0	0	0
0	1	0	1	0	1	0	0
0	1	1	1	0	0	0	0
1	0	0	0	1	1	0	0
1	0	1	0	1	0	0	0
1	1	0	0	0	1	0	0
1	1	1	0	0	0	0	0

Exercícios em sala:

1) Simplifique o circuito abaixo usando o teorema de De Morgan





- Complemento de uma expressão lógica:
 - Para achar o complemento de uma expressão lógica devemos transformar em dual (manter as associações) e inverter as variáveis.

$$0 \longleftrightarrow 1$$

$$+ \longleftrightarrow \overline{X}$$

$$(diferença de Dual)$$

Exemplo: encontrar o complemento

•
$$A \overline{B} + C \longrightarrow (\overline{A} + B).\overline{C}$$

Α	В	C	Ā	B	Ċ	A.B	$\overline{AB} + C$	Ā+ B	$(\overline{A} + B) \overline{.C}$
0	0	0	1	1	1	0	0	1	1
0	0	1	1	1	0	0	1	1	0
0	1	0	1	0	1	0	0	1	1
0	1	1	1	0	0	0	1	1	0
1	0	0	0	1	1	1	1	0	0
1	0	1	0	1	0	1	1	0	0
1	1	0	0	0	1	0	0	1	1
1	1	1	0	0	0	0	1	1	0

Um é complemento do outro

•
$$\overline{B}.(C + D.K)$$
 \longrightarrow $B + \overline{C}.(\overline{D} + \overline{K})$
• $X + Y.Z = \overline{X}.(\overline{Y} + \overline{Z})$

•
$$X + Y.Z = X . (Y + Z)$$

Observações:

Expressões equivalentes -> Representam a mesma situação prática ou mesma tabela verdade

Expressões duais -> obtidas da transformação dual na expressão original (não tem relação numérica)

Manter associação → o AND é prioritário

Exercícios em SALA, terminar em casa NO ANEXO: Escreva as expressões na forma dual e complementar, desenhe o esquemas dos circuitos que executam as expressões originais e levante as tabelas verdades correspondentes:

1)
$$AB + \overline{ABC} + \overline{AC} + \overline{ABC}$$

2)
$$A.(\overline{C}+D)B + A\overline{B}D + A\overline{C}+\overline{A}DC$$

3)
$$\{[\overline{A}+(C.\overline{D})]+\overline{B}\}$$
. $(\overline{A}+B+\overline{D})$. $(\overline{A}+C)$. $(A+\overline{D}+\overline{C})$

Atividades Para casa: Ler o Capítulo 3 do Livro texto e Responder as questões e problemas das seções 3.10, 3.11 e 3.12

Exercício: A) Demonstrar as propriedades algébricas usando Tabela verdade

Sistemas Digitais para Computação

Roteiro da 5^a aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

• Uniformização em portas NAND e NOR

Referência Livro Texto: Capítulo 3 – 3.11 e 3.12

Objetivo: apresentar Uniformização de expressões NAND, Uniformização de expressões NOR, Uniformização em portas de apenas duas entradas.

Atividades:

• Apresentar os conceitos e exemplos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS

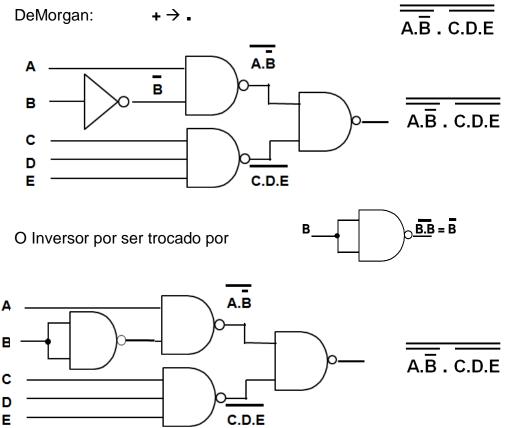
• UNIFORMIZAÇÃO DE EXPRESSÕES EM PORTAS NAND

Lembrete: complemento duas vezes \rightarrow $\overline{\overline{A}} = A$

Exemplo 1: implemente a expressão a seguir só com portas NAND → A.Ē + C.D.E

• Complementar 2 vezes:

Distribui a barra de baixo e aplicando De Morgan sobre o (+) OU → AND



Exemplo 2: implemente a expressão a seguir só com portas NAND

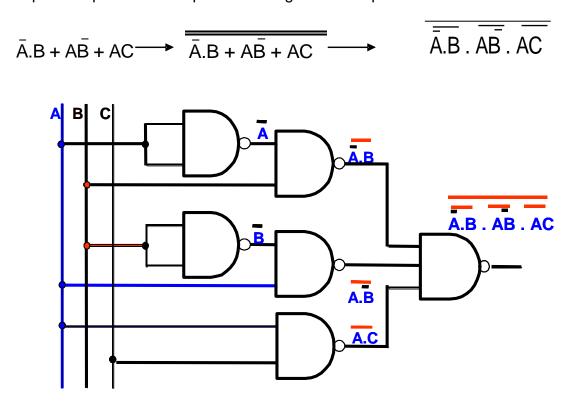
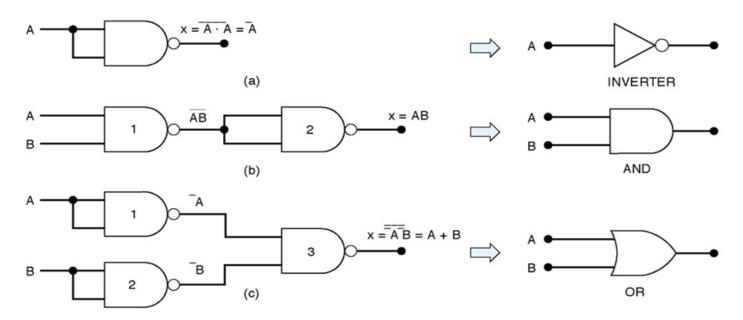


Figura 3-29 Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

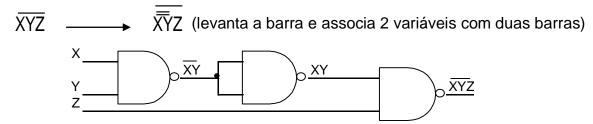
As portas NAND podem ser usadas para implementar qualquer função booleana.



• Uniformização em portas NAND de duas entradas.

Exemplo 3: implemente a expressão à seguir só com portas NAND de 2 entradas

Lembrete: NAND de 3 entradas → NAND de 2 entradas



Observações:

- Podemos conectar duas saídas? Não, já duas entradas Sim, por exemplo para obter um inversor com NAND de 2 duas entradas:

Elemento neutro do AND é o 1

$$\overline{X}.\overline{X} = \overline{X}$$
 $\overline{1}.\overline{X} = \overline{X}$

Mais usada

Exemplo 4: Uniformizar em NAND de duas entradas ->

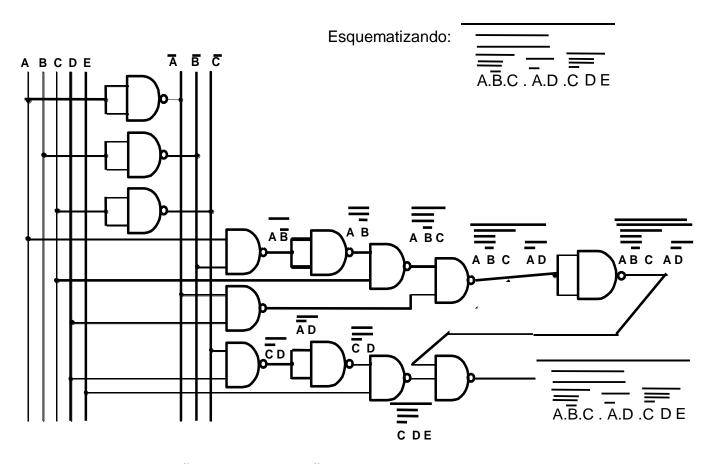
$$\overline{A.B.C} + \overline{A.D} + \overline{CDE}$$

1º Passo: duas barras grandes

Troca + ← →

2º Passo: distribui 1 barra grande em 3 barras pequenas (De Morgan)

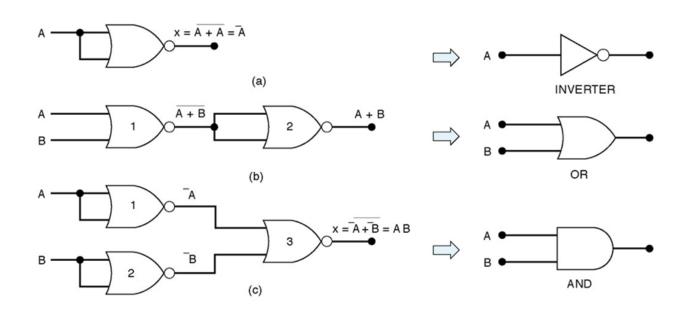
3º Passo: dupla inversão nos termos de 3 variáveis e barra dupla em 2 grupos AND→ 1ª solução →



• UNIFORMIZAÇÃO DE EXPRESSÕES em NOR de 2 entradas

Figura 3-30 - Sistemas Digitais: Princípios e Aplicações - Ronald J. Tocci e Neal S. Widmer-Capítulo 3

As portas NOR podem ser usadas para implementar qualquer função booleana.



A.B + C.D + A.CExemplo 5: Uniformizar em NOR de duas entradas 1º Passo: duas barras grandes em cada AND AB + CD + ACsubstitui 2º Passo: distribui 1 barra de baixo por 2 barras pequenas \rightarrow A+ B+C+D+A+C (De Morgan) 3º Passo: elimina as duplas inversões isoladas e acrescenta duas barras associando os NOR 2 a 2 A+ B +C+ D +A+C ᅙᅙ Ā+B + C+D + A+C Ā+B + C+D + A+0 Ā+B + C+D

Exercícios em SALA, terminar em casa NO ANEXO:

• Uniformizar em NAND – 2 entradas e NOR - 2 entradas.

Exercício 1: \overline{A} B + A C + B C, Exercício 2: \overline{A} B C + \overline{A} B \overline{C} + \overline{A} B C, Exercício 3: A B + \overline{A} B C

Atividades Para casa:

- Determinar quantas são as soluções do exemplo 4 em NAND de 2 entradas
- Escrever todas as soluções do exemplo 5 em NOR de 2 entradas.
- Ler o Capítulo 3 do Livro texto e Responder as questões e problemas do Capítulo 3 3.11 e 3.1

Sistemas Digitais para Computação

Roteiro da 6ª aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

• Teoremas de Simplificação

Referência Livro Texto: Capítulo 3 – 3.10

Objetivo: apresentar os Teoremas de simplificação: Redução, Redundância e Termo Fantasma, e fazer Simplificação de expressões algébricas

Atividades:

• Apresentar os conceitos e exemplos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS

• TEOREMAS DE SIMPLIFICAÇÃO:

São teoremas que vão ajudar a simplificar expressões lógicas.

1 – ABSORÇÃO: A simplificação ocorre nos termos maiores

$$X + XY = X$$

$$X (X+Y) = X$$

Propriedade distributiva

2 - REDUNDÂNCIA: Termo isolado aparece como fator de outro termo, este outro termo é desprezível.

$$X.Y + X.\overline{Y} = X$$

$$(X+Y) \cdot (X+\overline{Y}) = X$$

$$X (\underline{Y + \overline{Y}}) = X$$

$$X + \underbrace{XY + XY + YY}_{X + X + 0} = X$$

$$X + \stackrel{\clubsuit}{X} Y = X + Y$$

$$\times + \stackrel{\uparrow}{\cancel{X}} \cdot Y = X + Y$$
 $\times Y + \times \stackrel{\uparrow}{\cancel{Y}} \stackrel{?}{\cancel{Z}} = X + X = X$

O inverso de termo isolado é fator de um termo Maior \rightarrow este termo $\overline{\chi}$ invertido pode ser eliminado do termo maior

Termo pequeno XY dentro de um termo grande XYZ mas com uma variável mudada → Y esta pode ser eliminada do termo maior

Χ	Υ	X	$\bar{X} Y$	$X + \overline{X} Y$	X + Y
0	0	1	0	0	0
0	1	1	1 1		1
1	0	0	0	1	1
1	1	0	0	1	1

4 -
$$XY + \overline{X}.Z + YZ = XY + \overline{X}Z$$

incluso

TERMO FANTASMA (incluso)

o termo fantasma é formado pelos restos de operandos complementares.

Χ	Υ	Z	XY	\overline{X}	\overline{X} .Z	ΥZ	XY+X.Z+YZ	XY+X.Z
0	0	0	0	1	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	0	1	0	0	0	0
0	1	1	0	1	1	1	1	1
1	0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	0	0
1	1	0	1	0	0	0	1	1
1	1	1	1	0	0	1	1	1

Resumo:

1 -
$$X + XY = X$$
 (ABSORÇÃO)

Dual
2 -
$$X.Y + X.\overline{Y} = X$$
 (REDUNDÂNCIA) \rightarrow (X+Y). $(X+\overline{Y}) = X$

$$3 - X + \overline{XY} = X + Y$$
 (REDUÇÃO) $3.a - XY + X.\overline{Y}.Z = XY + XZ$

4 -
$$XY + \overline{X}.Z + \underline{YZ} = XY + \overline{X}Z$$
 TERMO FANTASMA (incluso)

Exercícios: Simplificação de expressões algébricas

a)
$$S = A.B.C + A.\overline{C} + A.\overline{B}$$

$$1 \stackrel{?}{\longleftarrow} 2 \quad 3 \quad \text{redução} \quad A.\overline{C} \rightarrow \text{em A.C.B} \rightarrow \text{AB} + A.\overline{C}$$

$$A.B + A.\overline{C} + A.\overline{B}$$

$$1 \stackrel{?}{\longleftarrow} 3 \quad \text{redundância} \quad AB + A\overline{B} = A$$

$$S = A.\overline{C} + A$$

$$S = A \quad \text{absorsão}$$
b)
$$S = \overline{A} \, \overline{B} + \overline{A} \, B \quad \text{redundância}$$

b)
$$S = \overline{A}.\overline{B}+\overline{A}.B$$
 redundância $S = \overline{A}$

c) 1)
$$S = \overline{A.B.C} + \overline{A.B.C} + \overline{A.B.C} + \overline{A.B.C} + \overline{A.B.C} + \overline{A.B.C}$$
 duas redundâncias $\overline{A.C} + \overline{A.B.C} + \overline{A.B$

d)
$$S = (\overline{A.C} + B + D) + C.(\overline{A.C.D})$$

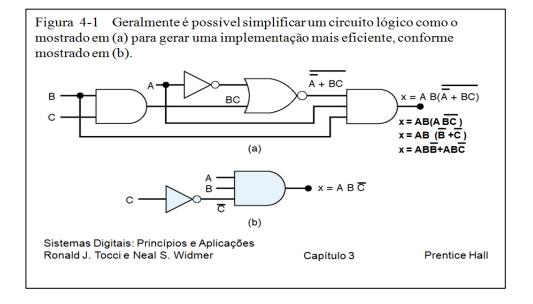
$$S = (A.C.\overline{B}.\overline{D}) + C.(\overline{A} + \overline{C} + \overline{D})$$

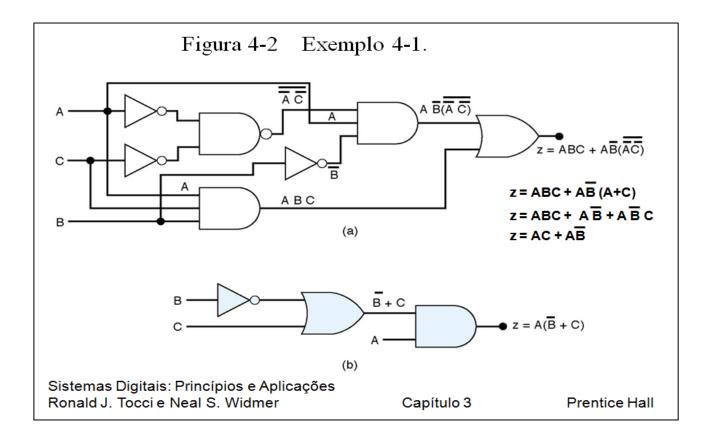
$$S = A.C.\overline{B}.\overline{D} + C.\overline{A} + C\overline{D}$$

$$S = C.\overline{B}.\overline{D} + \overline{C}.\overline{A} + C\overline{D}$$

$$S = C.\overline{B}.\overline{D} + \overline{C}.\overline{A} + C\overline{D}$$

$$S = C.\overline{D} + \overline{A}.C$$





Exercícios em SALA, terminar em casa NO ANEXO:

- Simplifique as expressões a) b) e c)
- Desenhe o diagrama de blocos lógicos (esquema) dos circuitos simplificados usando somente portas NAND de duas entradas e também usando somente portas NOR de duas entradas

1)
$$AB + ABC + AC + ABC$$

2)
$$A.(\overline{C}+D)B + A\overline{B}D + A\overline{C}+\overline{A}DC$$

3)
$$\{[\overline{A}+(C.\overline{D})]+\overline{B}\}$$
. $(\overline{A}+B+\overline{D})$. $(\overline{A}+C)$. $(A+\overline{D}+\overline{C})$

Atividades para casa:

 Ler o Capítulo 3 do Livro texto e Responder as questões e problemas das seções 3.10

Sistemas Digitais para Computação

Roteiro da 7ª aula

Referência ao Programa: Álgebra Booleana e Circuitos Lógicos

• Simplificação Algébrica

Referência Livro Texto: Capítulo 4 - 4.1 a 4.4

Objetivo: apresentar a simplificação algébrica através de Forma de Soma de Produtos; Formula de Interpolação (obtenção da expressão a partir da tabela verdade); Simplificação algébrica; Projeto de circuitos combinacionais.

Atividades:

Apresentar os conceitos e exemplos

ALGEBRA BOOLEANA E CIRCUITOS LÓGICOS

 FORMA DE SOMA DE PRODUTOS – portas AND ligados a portas OR para permitir a aplicação de simplificação algébrica

Exemplos:
$$1^{\circ} - S = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.C + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + A.B.\overline{C}$$

 $2^{\circ} - S = A.B.C + A.\overline{C} + A.\overline{B}$

Para estar na forma de soma de produtos:

• A expressão Não pode conter Termos com inversão de mais de uma variável:

$$\overline{A.B.C} \rightarrow (\overline{A+B}).C \rightarrow \overline{A.C+B.C}$$

Exemplo 1: Simplificar a expressão algébrica → S = A.B.C + A.B.(A.C)

$$S = A.B.C + A.\overline{B}.(\overline{A}.\overline{C})$$

$$S = A.B.C + A.\overline{B}.(\overline{A}+\overline{C})$$

$$S = A.B.C + A.\overline{B}.(A+C)$$

$$S = A.B.C + A.\overline{B}.(A+C)$$

$$S = A.B.C + A.\overline{B}.A+A.\overline{B}.C$$

$$S = A.B.C + B.A+A.\overline{B}.C$$

$$S = A.C + B.A+A.B.C$$

$$S = A.C + B.A$$

Exemplo 2: Simplificar a expressão algébrica:

$$S = (\overline{A.C} + B+ D) + C.(\overline{A.C.D})$$

$$S = (\overline{A.C} \cdot \overline{B} \cdot \overline{D}) + C.(\overline{A+C+D})$$

$$S = (A.C \cdot \overline{B} \cdot \overline{D}) + C.\overline{A+C.D}$$

$$Com A invertido \rightarrow elimina o A$$

$$S = (A.C \cdot \overline{B} \cdot \overline{D}) + C.\overline{A+C.D}$$

$$Absorção: C\overline{D} + C.\overline{B.D} = C.\overline{D}$$

$$S = C\overline{D} + C\overline{A}$$

FORMULA DE INTERPOLAÇÃO

Exemplo com 3 variáveis: Na tabela verdade fornecida, obter a expressão da saída S.

X + XY = X + Y

Α	В	С	S		
0	0	0	0		
0	0	1	1	ĀBC	111=1
0	1	0	1	ĀBC	111=1
0	1	1	1	ABC	111=1
1	0	0	0		
1	0	1	0	_	
1	1	0	1	ABC	111=1
1	1	1	0		

$$S = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.\overline{C}$$
* usando a simplificação: Redundância
 $X.Y + X.\overline{Y} = X$

$$S = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.\overline{C}$$

$$Redund ancia$$

$$\overline{A}.B$$

$$S = \overline{A}.\overline{B}.C + \overline{A}.B + A.B.\overline{C}$$

* usando a redução 1

$$S = \overline{A}.B + \overline{A}.C + A.B.\overline{C}$$

$$(+\overline{X}Y = X + Y)$$

* usando a redução 2

$$S = \overline{A}.B + \overline{A}.C + B.\overline{C}$$
* retirando o termo fantasma
$$XY + \overline{X}.Z + YZ = XY + \overline{X}Z$$

$$S = \overline{A}.C + B.\overline{C}$$

Outro caminho

$$S = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.\overline{C}$$

$$1^{a} \text{ redundância}$$

$$2^{a} \text{ redundância}$$

$$S = \overline{A}.C + B.\overline{C}$$

Conclusão: quando encontramos o termo fantasma o caminho foi maior.

Exercício 1: Utilizando a tabela faça: fórmula de interpolação; simplificação e esquematização do circuito correspondente.

Χ	Υ	Ζ	S1	S2	S3	S4	S5
0	0	0	0	1	0	1	0
0	0	1	1	0	0	0	0
0	1	0	1	0	1	0	1
0	1	1	1	1	0	1	1
1	0	0	0	1	1	1	1
1	0	1	1	1	0	1	0
1	1	0	1	0	1	1	1
1	1	1	0	1	1	0	1

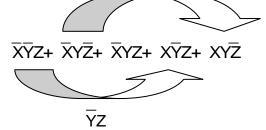
1º Formula de Interpolação:

$$\begin{array}{rclcrcl} S1 &=& \overline{XYZ} + & \overline{$$

2º Simplificação: Redundância

$$AB + \overline{AB} = B$$
 \longrightarrow $S1 =$

3º Simplificação: AB +A.B.C = AB + BC



$$S1 = \overline{YZ} + Y\overline{Z} + \overline{X}YZ$$

 $S1 = \overline{Y}Z + Y\overline{Z} + \overline{X}.Z$

Exercício 2: Projetar um circuito "Detector de Maioria" de 3 entradas utilizando apenas portas NAND de 2 entradas.

- Passos: 1. Tabela da verdade
 - 2. Fórmula de interpolação
 - 3. Simplificação
 - 4. Nand 2 entradas.

Solução

1º Tabela verdade

4	Α	В	С	S	_	
	0	0	0	0	•	
	0	0	1	0		
	0	1	0	0		
	0	1	1	1	A.B.C	111
	1	0	0	0		
	1	0	1	1	$A.\overline{B}.C$	111
	1	1	0	1	A.B.C A.B.C A.B.C	111
	1	1	1	1	A.B.C	111

2º Formula de interpolação

$$S = \overline{A}.B.C+ A.\overline{B}.C+ A.B.\overline{C}+ A.B.C$$

$$S = \overline{A}.B.C+ A.\overline{B}.C+ A.B.\overline{C}+ A.B.C$$

$$S = \overline{A}.B.C+ A.\overline{B}.C+ A.B$$

$$S = \overline{A}.B.C+ A.\overline{B}.C+ A.B$$

$$S = B.C + A.C + A.B$$

NAND 2

$$S = \overline{A.B + B.C + A.C}$$

$$S = \overline{A.B} \cdot \overline{B.C} \cdot \overline{A.C}$$

$$S = \overline{\overline{A.B} \cdot \overline{B.C} \cdot \overline{A.C}}$$

$$S = \overline{\overline{A.B} \cdot \overline{B.C} \cdot \overline{A.C}}$$

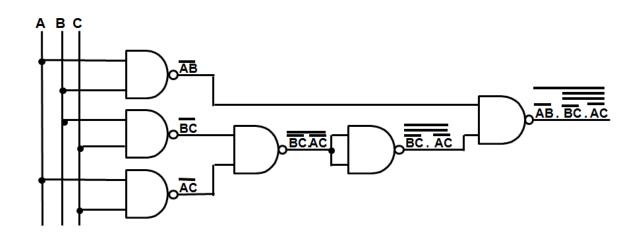
TEOREMAS DE SIMPLIFICAÇÃO:

1º - ABSORÇÃO: X + X.Y = X DUAL→ X.(X+Y) = X 2º - REDUNDÂNCIA:

$$X.Y+X.\overline{Y}=X$$
 DUAL \rightarrow $(X+Y).(X+\overline{Y})=X$ 3° - REDUÇÃO: 3° a - REDUÇÃO:

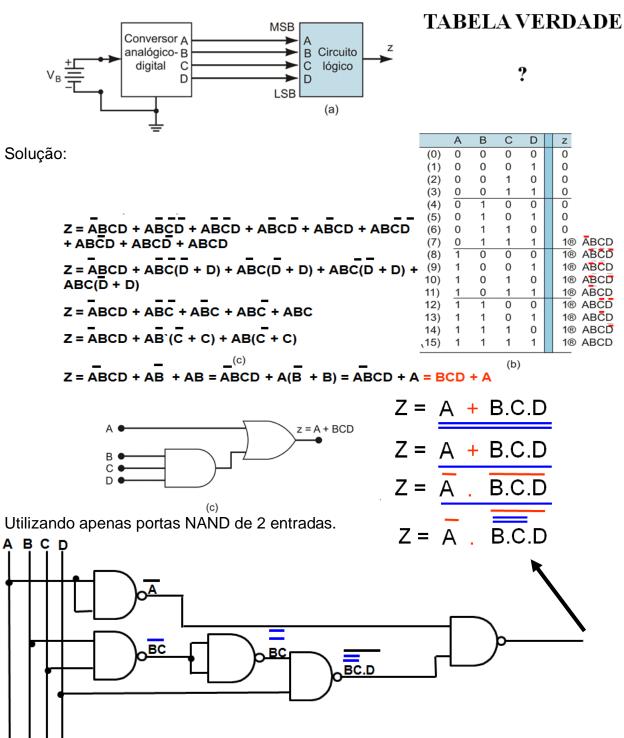
$$X + \overline{X}.Y = X + Y$$
 $XY + X\overline{Y}Z = XY + XZ$
4° - TERMO FANTASMA OU TERMO INCLUSO:

$$XY + \overline{X}.Z + YZ = XY + \overline{X}Z$$



Exercício 3: do livro texto, Sistemas Digitais: Princípios e Aplicações-Ronald J. Tocci e Neal S. Widmer - Capítulo 4

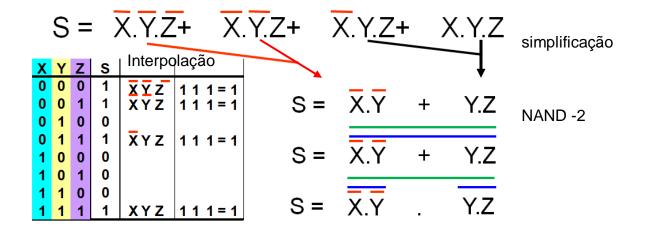
FIGURA 4-8 Exemplo 4-8: Na fig (a) um conversor analógico-digital esta monitorando a tensão de uma bateria de 12 V de uma espaçonave em órbita. A saída do conversor é um número binário de 4 bits, *ABCD*, que corresponde à tensão da bateria em degraus de 1 V, sendo *A* o MSB. As saídas binárias do conversor são ligadas em um circuito digital que deve produzir uma saída em ALTO sempre que o valor da tensão for maior que 6 V. Projete este circuito lógico.



Exercício 4: Utilizando a tabela faça um projeto completo com NAND de duas portas e um diagrama de tempo.

Solução: 1o. Passo: A fórmula de interpolação 2o. Passo: Simplificação Algébrica.

3o. Passo: NAND 2 portas



Esquema:

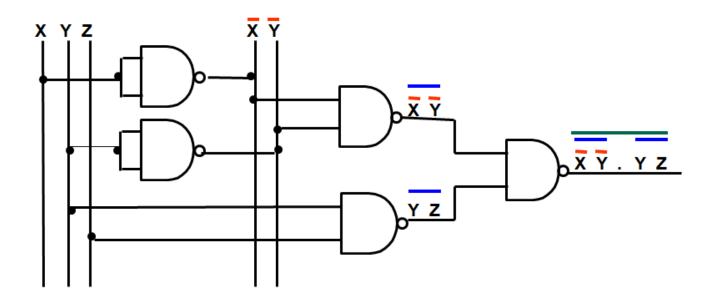
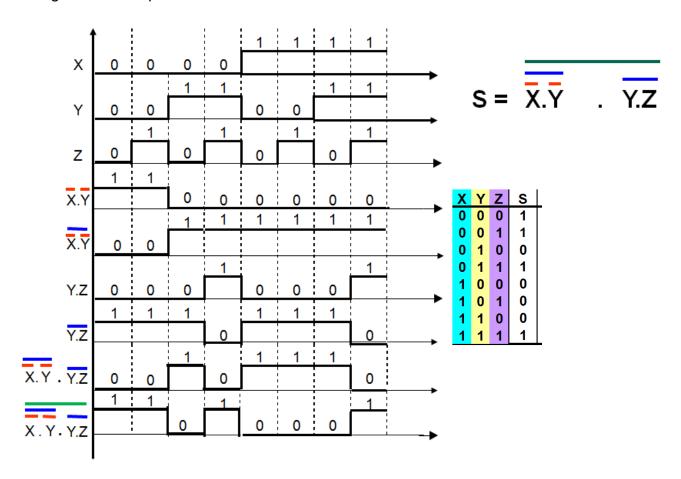


Diagrama de tempo:



Atividades Para Casa:

• Ler o Capítulo 4 do Livro texto e Responder as questões e problemas das seção 4.1 a 4.4

Exercícios:

• Terminar o exercício1: simplificar as expressões S2 a S5 e esquematizar os circuitos simplificados S1 a S5 correspondentes usando NAND de 2 entradas.

 $\overline{X}\overline{Y}Z+ \overline{X}Y\overline{Z}+ \overline{X}YZ+ X\overline{Y}Z+ XY\overline{Z}$

 $S2 = \overline{X}\overline{Y}\overline{Z} + \overline{X}YZ + X\overline{Y}\overline{Z} + X\overline{Y}Z + XYZ$ $\overline{X}Y\overline{Z}+X\overline{Y}\overline{Z}+XY\overline{Z}+XYZ$

S3 =

XYZ+ XYZ+ XYZ+ XYZ S4 =

 $S5 = \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ} + \overline{XYZ}$

OBS: 8ª aula → avaliação